\(\int \frac {x^4 (a+b \text {arccosh}(c x))}{(d-c^2 d x^2)^{3/2}} \, dx\) [115]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 226 \[ \int \frac {x^4 (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\frac {b x^2 \sqrt {-1+c x} \sqrt {1+c x}}{4 c^3 d \sqrt {d-c^2 d x^2}}+\frac {x^3 (a+b \text {arccosh}(c x))}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {3 x \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{2 c^4 d^2}-\frac {3 \sqrt {-1+c x} \sqrt {1+c x} (a+b \text {arccosh}(c x))^2}{4 b c^5 d \sqrt {d-c^2 d x^2}}-\frac {b \sqrt {-1+c x} \sqrt {1+c x} \log \left (1-c^2 x^2\right )}{2 c^5 d \sqrt {d-c^2 d x^2}} \]

[Out]

x^3*(a+b*arccosh(c*x))/c^2/d/(-c^2*d*x^2+d)^(1/2)+1/4*b*x^2*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c^3/d/(-c^2*d*x^2+d)^(
1/2)-3/4*(a+b*arccosh(c*x))^2*(c*x-1)^(1/2)*(c*x+1)^(1/2)/b/c^5/d/(-c^2*d*x^2+d)^(1/2)-1/2*b*ln(-c^2*x^2+1)*(c
*x-1)^(1/2)*(c*x+1)^(1/2)/c^5/d/(-c^2*d*x^2+d)^(1/2)+3/2*x*(a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/c^4/d^2

Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 226, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {5934, 5938, 5892, 30, 84, 266} \[ \int \frac {x^4 (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\frac {x^3 (a+b \text {arccosh}(c x))}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {3 \sqrt {c x-1} \sqrt {c x+1} (a+b \text {arccosh}(c x))^2}{4 b c^5 d \sqrt {d-c^2 d x^2}}+\frac {3 x \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{2 c^4 d^2}-\frac {b \sqrt {c x-1} \sqrt {c x+1} \log \left (1-c^2 x^2\right )}{2 c^5 d \sqrt {d-c^2 d x^2}}+\frac {b x^2 \sqrt {c x-1} \sqrt {c x+1}}{4 c^3 d \sqrt {d-c^2 d x^2}} \]

[In]

Int[(x^4*(a + b*ArcCosh[c*x]))/(d - c^2*d*x^2)^(3/2),x]

[Out]

(b*x^2*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(4*c^3*d*Sqrt[d - c^2*d*x^2]) + (x^3*(a + b*ArcCosh[c*x]))/(c^2*d*Sqrt[d
- c^2*d*x^2]) + (3*x*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/(2*c^4*d^2) - (3*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(
a + b*ArcCosh[c*x])^2)/(4*b*c^5*d*Sqrt[d - c^2*d*x^2]) - (b*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*Log[1 - c^2*x^2])/(2*
c^5*d*Sqrt[d - c^2*d*x^2])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 84

Int[((e_.) + (f_.)*(x_))^(p_.)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Int[ExpandIntegrand[(
e + f*x)^p/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IntegerQ[p]

Rule 266

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 5892

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*S
imp[Sqrt[1 + c*x]*(Sqrt[-1 + c*x]/Sqrt[d + e*x^2])]*(a + b*ArcCosh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e,
n}, x] && EqQ[c^2*d + e, 0] && NeQ[n, -1]

Rule 5934

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[
f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcCosh[c*x])^n/(2*e*(p + 1))), x] + (-Dist[f^2*((m - 1)/(2*e*(p +
 1))), Int[(f*x)^(m - 2)*(d + e*x^2)^(p + 1)*(a + b*ArcCosh[c*x])^n, x], x] - Dist[b*f*(n/(2*c*(p + 1)))*Simp[
(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)], Int[(f*x)^(m - 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*A
rcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[p, -1]
&& IGtQ[m, 1]

Rule 5938

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[
f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcCosh[c*x])^n/(e*(m + 2*p + 1))), x] + (Dist[f^2*((m - 1)/(c^2*(
m + 2*p + 1))), Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcCosh[c*x])^n, x], x] - Dist[b*f*(n/(c*(m + 2*p + 1))
)*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)], Int[(f*x)^(m - 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(
a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && I
GtQ[m, 1] && NeQ[m + 2*p + 1, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {x^3 (a+b \text {arccosh}(c x))}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {3 \int \frac {x^2 (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx}{c^2 d}-\frac {\left (b \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {x^3}{(-1+c x) (1+c x)} \, dx}{c d \sqrt {d-c^2 d x^2}} \\ & = \frac {x^3 (a+b \text {arccosh}(c x))}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {3 x \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{2 c^4 d^2}-\frac {3 \int \frac {a+b \text {arccosh}(c x)}{\sqrt {d-c^2 d x^2}} \, dx}{2 c^4 d}+\frac {\left (3 b \sqrt {-1+c x} \sqrt {1+c x}\right ) \int x \, dx}{2 c^3 d \sqrt {d-c^2 d x^2}}-\frac {\left (b \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \left (\frac {x}{c^2}+\frac {x}{c^2 \left (-1+c^2 x^2\right )}\right ) \, dx}{c d \sqrt {d-c^2 d x^2}} \\ & = \frac {b x^2 \sqrt {-1+c x} \sqrt {1+c x}}{4 c^3 d \sqrt {d-c^2 d x^2}}+\frac {x^3 (a+b \text {arccosh}(c x))}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {3 x \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{2 c^4 d^2}-\frac {3 \sqrt {-1+c x} \sqrt {1+c x} (a+b \text {arccosh}(c x))^2}{4 b c^5 d \sqrt {d-c^2 d x^2}}-\frac {\left (b \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {x}{-1+c^2 x^2} \, dx}{c^3 d \sqrt {d-c^2 d x^2}} \\ & = \frac {b x^2 \sqrt {-1+c x} \sqrt {1+c x}}{4 c^3 d \sqrt {d-c^2 d x^2}}+\frac {x^3 (a+b \text {arccosh}(c x))}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {3 x \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{2 c^4 d^2}-\frac {3 \sqrt {-1+c x} \sqrt {1+c x} (a+b \text {arccosh}(c x))^2}{4 b c^5 d \sqrt {d-c^2 d x^2}}-\frac {b \sqrt {-1+c x} \sqrt {1+c x} \log \left (1-c^2 x^2\right )}{2 c^5 d \sqrt {d-c^2 d x^2}} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 1.24 (sec) , antiderivative size = 192, normalized size of antiderivative = 0.85 \[ \int \frac {x^4 (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\frac {-4 a c d x \left (-3+c^2 x^2\right )+12 a \sqrt {d} \sqrt {d-c^2 d x^2} \arctan \left (\frac {c x \sqrt {d-c^2 d x^2}}{\sqrt {d} \left (-1+c^2 x^2\right )}\right )+b d \left (8 c x \text {arccosh}(c x)-\sqrt {\frac {-1+c x}{1+c x}} (1+c x) \left (6 \text {arccosh}(c x)^2-\cosh (2 \text {arccosh}(c x))+8 \log \left (\sqrt {\frac {-1+c x}{1+c x}} (1+c x)\right )+2 \text {arccosh}(c x) \sinh (2 \text {arccosh}(c x))\right )\right )}{8 c^5 d^2 \sqrt {d-c^2 d x^2}} \]

[In]

Integrate[(x^4*(a + b*ArcCosh[c*x]))/(d - c^2*d*x^2)^(3/2),x]

[Out]

(-4*a*c*d*x*(-3 + c^2*x^2) + 12*a*Sqrt[d]*Sqrt[d - c^2*d*x^2]*ArcTan[(c*x*Sqrt[d - c^2*d*x^2])/(Sqrt[d]*(-1 +
c^2*x^2))] + b*d*(8*c*x*ArcCosh[c*x] - Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)*(6*ArcCosh[c*x]^2 - Cosh[2*ArcCosh
[c*x]] + 8*Log[Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)] + 2*ArcCosh[c*x]*Sinh[2*ArcCosh[c*x]])))/(8*c^5*d^2*Sqrt[
d - c^2*d*x^2])

Maple [A] (verified)

Time = 1.34 (sec) , antiderivative size = 301, normalized size of antiderivative = 1.33

method result size
default \(-\frac {a \,x^{3}}{2 c^{2} d \sqrt {-c^{2} d \,x^{2}+d}}+\frac {3 a x}{2 c^{4} d \sqrt {-c^{2} d \,x^{2}+d}}-\frac {3 a \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{2 c^{4} d \sqrt {c^{2} d}}+\frac {b \sqrt {c x -1}\, \sqrt {c x +1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (4 \sqrt {c x +1}\, \operatorname {arccosh}\left (c x \right ) \sqrt {c x -1}\, c^{3} x^{3}-2 c^{4} x^{4}+6 \operatorname {arccosh}\left (c x \right )^{2} x^{2} c^{2}-12 \sqrt {c x +1}\, \operatorname {arccosh}\left (c x \right ) \sqrt {c x -1}\, c x -8 c^{2} x^{2} \operatorname {arccosh}\left (c x \right )+8 \ln \left (\left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )^{2}-1\right ) x^{2} c^{2}+3 c^{2} x^{2}-6 \operatorname {arccosh}\left (c x \right )^{2}+8 \,\operatorname {arccosh}\left (c x \right )-8 \ln \left (\left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )^{2}-1\right )-1\right )}{8 \left (c^{2} x^{2}-1\right )^{2} d^{2} c^{5}}\) \(301\)
parts \(-\frac {a \,x^{3}}{2 c^{2} d \sqrt {-c^{2} d \,x^{2}+d}}+\frac {3 a x}{2 c^{4} d \sqrt {-c^{2} d \,x^{2}+d}}-\frac {3 a \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{2 c^{4} d \sqrt {c^{2} d}}+\frac {b \sqrt {c x -1}\, \sqrt {c x +1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (4 \sqrt {c x +1}\, \operatorname {arccosh}\left (c x \right ) \sqrt {c x -1}\, c^{3} x^{3}-2 c^{4} x^{4}+6 \operatorname {arccosh}\left (c x \right )^{2} x^{2} c^{2}-12 \sqrt {c x +1}\, \operatorname {arccosh}\left (c x \right ) \sqrt {c x -1}\, c x -8 c^{2} x^{2} \operatorname {arccosh}\left (c x \right )+8 \ln \left (\left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )^{2}-1\right ) x^{2} c^{2}+3 c^{2} x^{2}-6 \operatorname {arccosh}\left (c x \right )^{2}+8 \,\operatorname {arccosh}\left (c x \right )-8 \ln \left (\left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )^{2}-1\right )-1\right )}{8 \left (c^{2} x^{2}-1\right )^{2} d^{2} c^{5}}\) \(301\)

[In]

int(x^4*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/2*a*x^3/c^2/d/(-c^2*d*x^2+d)^(1/2)+3/2*a/c^4*x/d/(-c^2*d*x^2+d)^(1/2)-3/2*a/c^4/d/(c^2*d)^(1/2)*arctan((c^2
*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))+1/8*b*(c*x-1)^(1/2)*(c*x+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)*(4*(c*x+1)^(1/2)*ar
ccosh(c*x)*(c*x-1)^(1/2)*c^3*x^3-2*c^4*x^4+6*arccosh(c*x)^2*x^2*c^2-12*(c*x+1)^(1/2)*arccosh(c*x)*(c*x-1)^(1/2
)*c*x-8*c^2*x^2*arccosh(c*x)+8*ln((c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))^2-1)*x^2*c^2+3*c^2*x^2-6*arccosh(c*x)^2+8*
arccosh(c*x)-8*ln((c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))^2-1)-1)/(c^2*x^2-1)^2/d^2/c^5

Fricas [F]

\[ \int \frac {x^4 (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\int { \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )} x^{4}}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(x^4*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="fricas")

[Out]

integral((b*x^4*arccosh(c*x) + a*x^4)*sqrt(-c^2*d*x^2 + d)/(c^4*d^2*x^4 - 2*c^2*d^2*x^2 + d^2), x)

Sympy [F]

\[ \int \frac {x^4 (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\int \frac {x^{4} \left (a + b \operatorname {acosh}{\left (c x \right )}\right )}{\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(x**4*(a+b*acosh(c*x))/(-c**2*d*x**2+d)**(3/2),x)

[Out]

Integral(x**4*(a + b*acosh(c*x))/(-d*(c*x - 1)*(c*x + 1))**(3/2), x)

Maxima [F]

\[ \int \frac {x^4 (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\int { \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )} x^{4}}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(x^4*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="maxima")

[Out]

-1/2*a*(x^3/(sqrt(-c^2*d*x^2 + d)*c^2*d) - 3*x/(sqrt(-c^2*d*x^2 + d)*c^4*d) + 3*arcsin(c*x)/(c^5*d^(3/2))) + b
*integrate(x^4*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))/(-c^2*d*x^2 + d)^(3/2), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {x^4 (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(x^4*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {x^4 (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\int \frac {x^4\,\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}{{\left (d-c^2\,d\,x^2\right )}^{3/2}} \,d x \]

[In]

int((x^4*(a + b*acosh(c*x)))/(d - c^2*d*x^2)^(3/2),x)

[Out]

int((x^4*(a + b*acosh(c*x)))/(d - c^2*d*x^2)^(3/2), x)